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Coefficient bounds for certain subclasses of
bi-prestarlike functions associated
with the Chebyshev polynomials

H. Ö. Güney, G. Murugusundaramoorthy,
K. Vijaya, K. Thilagavathi

Abstract. In this paper, we introduce and investigate a new subclass
of bi-prestarlike functions defined in the open unit disk, associated with
Chebyshev Polynomials. Furthermore, we find estimates of first two
coefficients of functions in these classes, making use of the Chebyshev
polynomials. Also, we obtain the Fekete-Szegö inequalities for function
in these classes. Several consequences of the results are also pointed out
as corollaries.

1. Introduction

Let A denote the class of analytic functions of the form

(1) f(z) = z +

∞∑
n=2

an z
n

normalized by the conditions f(0) = 0 = f ′(0)− 1 defined in the open unit
disk

4 = {z ∈ C : |z| < 1}.

Let S be the subclass of A consisting of functions of the form (1) which are
also univalent in 4.

An analytic function ϕ is subordinate to an analytic function ψ, written
ϕ(z) ≺ ψ(z), provided there is an analytic function ω defined on 4 with
ω(0) = 0 and |ω(z)| < 1 satisfying ϕ(z) = ψ(ω(z)).

Let S∗(α) and K(α) denote the well-known subclasses of S, consisting of
starlike and convex functions of order α, 0 ≤ α < 1, respectively.
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The function

s(z) =
z

(1− z)2(1−α)
= z +

∞∑
n=2

Ψn(α)zn,

where

(2) Ψn(α) =


n∏
k=2

(k − 2α)

(n− 1)!


is the well-known extremal function for the class S∗ (α) . Also f ∈ A is
said to be prestarlike functions of order α(0 ≤ α < 1), denoted by R (α)
if f ∗ s(z) ∈ S∗ (α) . We note that R(1/2) = S∗(1/2) and R(0) = K(0).
Using the convolution techniques, Ruscheweyh [18] introduced and studied
the class of prestarlike functions of order α.

For functions f ∈ S, we have

f ∈ K(0)⇐⇒ zf ′ ∈ S∗(0).

The Koebe one quarter theorem [5] ensures that the image of 4 under
every univalent function f ∈ A contains a disk of radius 1

4 . Thus every
univalent function f has an inverse f−1 satisfying

f−1(f(z)) = z, z ∈ 4.
f(f−1(w)) = w(|w| < r0(f), r0(f) ≥ 1

4).

A function f ∈ A is said to be bi-univalent in 4 if both f and f−1 are
univalent in 4. Let Σ denote the class of bi-univalent functions defined in
the unit disk 4. Since f ∈ Σ has the Maclaurian series given by (1), a
computation shows that its inverse g = f−1 has the expansion

(3) g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 + · · · .
We notice that the class Σ is not empty. For example, the functions z, z

1−z ,
− log(1− z) and 1

2 log 1+z
1−z are members of Σ. However, the Koebe function

is not a member of Σ. In fact, Srivastava et al. [19] have actually revived the
study of analytic and bi-univalent functions in recent years, it was followed
by such works as those by(see [2, 3, 7, 11, 12, 14, 16, 17, 19, 31, 32, 33, 34]).

In Geometric Function Theory, there have been many interesting and
fruitful usages of a wide variety of special functions, q− calculus and special
polynomials (for example) the Fibonacci polynomials, Faber polynomials
the Lucas polynomials, the Pell polynomials, the Pell-Lucas polynomials,
and the Chebyshev polynomials of the second kind and Horadam polyno-
mials are potentially important in a variety of disciplines in the mathe-
matical, physical, statistical, and engineering sciences. These polynomi-
als have been studied in several papers from a theoretical point of view.
Lately ,there has been triggering interest by introducing a new class of A
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and discussed coefficient problems and celebrated Fekete-Szegö problem(see
[21, 26, 27, 28]) further certain subclasses of Σ were defined by means of
these polynomials(see[15, 20, 22, 24] and discussed extensively. Here, in
this article, we propose to make use of the Chebyshev polynomials, which is
used by us in this paper, play a considerable act in numerical analysis. We
know that the Chebyshev polynomials are four kinds. The most of books
and research articles related to specific orthogonal polynomials of Chebyshev
family, contain essentially results of Chebyshev polynomials of first and sec-
ond kinds Tn(x) and Un(x) and their numerous uses in different applications,
see Doha [4], Dziok et al. [6] and Mason [13].

The well-known kinds of the Chebyshev polynomials are the first and
second kinds. In the case of real variable x on (−1, 1), the first and second
kinds are defined by

Tn(x) = cosnθ,

Un(x) =
sin(n+ 1)θ

sin θ
,

where the subscript n denotes the polynomial degree and where x = cos θ.
We consider the function

Φ(z, t) =
1

1− 2tz + z2
.

We note that if t = cos τ , τ ∈
(−π

3 ,
π
3

)
, then for all z ∈ 4

Φ(z, t) =
1

1− 2tz + z2
= 1 +

∞∑
n=1

sin(n+ 1)τ

sin τ
zn

= 1 + 2 cos τz + (3 cos2 τ − sin2 τ)z2 + · · · .

Thus, we write

Φ(z, t) = 1 + U1(t)z + U2(t)z2 + · · · , z ∈ 4, t ∈ (−1, 1),

where Un−1 = sin(n arccos t)√
1−t2 for n ∈ N, are the second kind of the Chebyshev

polynomials. Also, it is known that

Un(t) = 2tUn−1(t)− Un−2(t),

and

(4) U1(t) = 2t, U2(t) = 4t2 − 1, U3(t) = 8t3 − 4t, . . .

The Chebyshev polynomials Tn(t), t ∈ [−1, 1], of the first kind have the
generating function of the form

∞∑
n=0

Tn(t)zn =
1− tz

1− 2tz + z2
, z ∈ 4.
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All the same, the Chebyshev polynomials of the first kind Tn(t) and the
second kind Un(t) are well connected by the following relationship

dTn(t)

dt
= nUn−1(t),

Tn(t) = Un(t)− tUn−1(t),

2Tn(t) = Un(t)− Un−2(t).

Several authors have introduced and investigated subclasses of bi-univalent
functions and obtained bounds for the initial coefficients (see [2, 3, 11, 12,
19, 23, 31]), bi-close-to-convex functions[8, 10] and m− fold symmetric func-
tions by [25, 30]. Recently, Jahangiri and Hamidi [9] introduced and studied
certain subclasses of bi-prestarlike functions mentioned as below:

The expansion of s(z) =
z

(1− z)2(1−α)
is given by

s(z) = z +
(2− 2α)

1!
z2 +

(2− 2α) (3− 2α)

2!
z3

+
(2− 2α) (3− 2α) (4− 2α)

3!
z4 + · · · .

So, by the definition of Hadamard product, we have

F (z) =
z

(1− z)2(1−α)
∗ f (z)

= s(z) ∗ f(z)

= z +
(2− 2α) a2

1!
z2 +

(2− 2α) (3− 2α) a3

2!
z3

+
(2− 2α) (3− 2α) (4− 2α) a4

3!
z4 + · · ·

equivalently

(5) F (z) = z + Ψ2(α)a2z
2 + Ψ3(α)a3z

3 + Ψ4(α)a4z
4 + · · · .

Similarly, for the inverse function g = f−1, we note that G (w) = F−1 (z)
and is obtained as

G (w) = w− (2− 2α) a2

1!
w2 +

(
4(2− 2α)2a2

2 − (2− 2α) (3− 2α) a3

)
2!

w3 + · · ·

equivalently

(6) G (w) = w −Ψ2(α)a2w
2 +

(
2Ψ2

2(α)a2
2 −Ψ3(α)a3

)
w3 + · · · .

In this paper, motivated by recent works of Altınkaya and Yalçın [1] and
Jahangiri and Hamidi [9], we introduce a subclass bi-prestarlike function
class associated with Chebyshev polynomials and obtain the initial Taylor
coefficients |a2| and |a3| for the functions f ∈ RΣ(λ, α,Φ) by subordination
and consider the celebrated Fekete-Szegö problem. We also provide relevant
connections of our results with those considered in earlier investigations.
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Now we define a new subclass bi-prestarlike functions in the open unit
disk, associated with Chebyshev Polynomials as below.

Definition 1. For 0 ≤ λ ≤ 1, and t ∈ (0, 1) a function f ∈ Σ of the form (1)
is said to be in the class RΣ(λ, α,Φ) if the following subordination holds:

(7) (1− λ)
zF ′(z)

F (z)
+ λ

(
1 +

zF ′′(z)

F ′(z)

)
≺ Φ(z, t)

and

(8) (1− λ)
wG′(w)

G(w)
+ λ

(
1 +

wG′′(w)

G′(w)

)
≺ Φ(w, t),

where z, w ∈ ∆ and F and G is given by (5) and (6), respectively.

Remark 1. Suppose f ∈ Σ. Then RΣ(0, α,Φ(z, t)) ≡ PS∗Σ(α,Φ) : thus
f ∈ PS∗Σ(α,Φ) if the following subordination holds:

zF ′(z)

F (z)
≺ Φ(z, t) and

wG′(w)

G(w)
≺ Φ(w, t),

where z, w ∈ ∆ and G is given by (6).

Remark 2. Suppose f ∈ Σ. Then RΣ(1, α, ) ≡ K∗Σ(α,Φ) : thus f ∈
K∗Σ(α,Φ) if the following subordination holds:

1 +
zF ′′(z)

F ′(z)
≺ Φ(z, t) and 1 +

wG′′(w)

G′(w)
≺ Φ(w, t),

where z, w ∈ ∆ and g is given by (6).

2. Initial Taylor Coefficients f ∈ RΣ(λ, α,Φ)

Theorem 1. Let f given by (1) be in the class RΣ(λ, α,Φ) and t ∈ (0, 1).
Then

(9) |a2| ≤
2t
√

2t√
|[2(1 + 2λ)Ψ3(α)− (λ2 + 5λ+ 2)Ψ2

2(α)]4t2 + (1 + λ)2Ψ2
2(α)|

and

(10) |a3| ≤
4t2

(1 + λ)2Ψ2
2(α)

+
t

(1 + 2λ)Ψ3(α)
,

where 0 ≤ λ ≤ 1 and t 6= (1+λ)Ψ2(α)√
(λ2+5λ+2)Ψ2

2(α)−2(1+2λ)Ψ3(α)
.

Proof. Let f ∈ RΣ(λ, α,Φ) and g = f−1. Considering (7) and (8), we have

(11) (1− λ)
zF ′(z)

F (z)
+ λ

(
1 +

zF ′′(z)

F ′(z)

)
= Φ(z, t)

and

(12) (1− λ)
wG′(w)

G(w)
+ λ

(
1 +

wG′′(w)

G′(w)

)
= Φ(w, t).
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Define the functions u(z) and v(w) by

(13) u(z) = c1z + c2z
2 + · · ·

and

(14) v(w) = d1w + d2w
2 + · · ·

are analytic in 4 with u(0) = 0 = v(0) and |u(z)| < 1, |v(w)| < 1, for all
z, w ∈ 4. It is well-known that

(15)
|u(z)| = |c1z + c2z

2 + · · · | < 1,

|v(w)| = |d1w + d2w
2 + · · · | < 1, z, w ∈ 4,

then

(16) |cj | ≤ 1, |dj | ≤ 1, for allj ∈ N.
Using (13) and (14) in (11) and (12) respectively, we have

(17) (1−λ)
zF ′(z)

F (z)
+λ

(
1 +

zF ′′(z)

F ′(z)

)
= 1 +U1(t)u(z) +U2(t)u2(z) + · · · ,

and

(18) (1−λ)
wG′(w)

G(w)
+λ

(
1 +

wG′′(w)

G′(w)

)
= 1+U1(t)v(w)+U2(t)v2(w)+· · · .

In light of (1)–(3), and from (17) and (18), we have

1 + (1 + λ)Ψ2(α)a2z + [2(1 + 2λ)Ψ3(α)a3 − (1 + 3λ)Ψ2
2(α)a2

2]z2 + · · ·
= 1 + U1(t)c1z + [U1(t)c2 + U2(t)c2

1]z2 + · · · ,
and

1− (1 + λ)Ψ2(α)a2w +
{

[(8λ+ 4)Ψ3(α)− (3λ+ 1)Ψ2
2(α))]a2

2

− 2(1 + 2λ)Ψ3(α)a3

}
w2 + · · ·

= 1 + U1(t)d1w + [U1(t)d2 + U2(t)d2
1]w2 + · · · .

which yields the following relations:

(1 + λ)Ψ2(α)a2 = U1(t)c1,(19)

−(1 + 3λ)Ψ2
2(α)a2

2 + 2(1 + 2λ)Ψ3(α)a3 = U1(t)c2 + U2(t)c2
1(20)

and

−(1 + λ)Ψ2(α)a2 = U1(t)d1,(21)

(4(1 + 2λ)Ψ3(α)− (1 + 3λ)Ψ2
2(α))a2

2−
− 2(1 + 2λ)Ψ3(α)a3 = U1(t)d2 + U2(t)d2

1.
(22)

From (19) and (21) it follows that

(23) c1 = −d1
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and

(24) 2(1 + λ)2Ψ2
2(α)a2

2 = U2
1 (t)(c2

1 + d2
1).

Adding (20) and (22), using (24), we obtain

a2
2 =

U3
1 (t)(c2 + d2)

2[{2(1 + 2λ)Ψ3(α)− (1 + 3λ)Ψ2
2(α)}U2

1 (t)− (1 + λ)2Ψ2
2(α)U2(t)]

.

Applying (16) to the coefficients c2 and d2, and using (4) we have
(25)

|a2| ≤
2t
√

2t√
|[2(1 + 2λ)Ψ3(α)− (λ2 + 5λ+ 2)Ψ2

2(α)]4t2 + (1 + λ)2Ψ2
2(α)|

.

By subtracting (22) from (20) and using (23),(24), we get

a3 =
U2

1 (t)(c2
1 + d2

1)

2(1 + λ)2Ψ2
2(α)

+
U1(c2 − d2)

4(1 + 2λ)Ψ3(α)
.

Using (4), once again applying (16) to the coefficients c1, c2, d1 and d2, we
get

�(26) |a3| ≤
4t2

(1 + λ)2Ψ2
2(α)

+
t

(1 + 2λ)Ψ3(α)
.

By taking λ = 0 or λ = 1 and t ∈ (0, 1), one can easily state the esti-
mates |a2| and |a3| for the function classes RΣ(0, α,Φ) = PS∗Σ(α,Φ) and
RΣ(1, α,Φ) = K∗Σ(α,Φ) respectively.

Remark 3. Let f given by (1) be in the class PS∗Σ(α,Φ). Then

|a2| ≤
2t
√

2t√
|[Ψ3(α)−Ψ2

2(α)]8t2 + Ψ2
2(α)|

and

|a3| ≤
4t2

Ψ2
2(α)

+
t

Ψ3(α)
.

where t 6= Ψ2(α)

2
√

2Ψ2
2(α)−2Ψ3(α)

.

Remark 4. Let f given by (1) be in the class K∗Σ(α,Φ). Then

(27) |a2| ≤
2t
√

2t√
|[3Ψ3(α)− 4Ψ2

2(α)]8t2 + 4Ψ2
2(α)|

and

(28) |a3| ≤
t2

Ψ2
2(α)

+
t

3Ψ3(α)
,

where t 6= Ψ2(α)√
8Ψ2

2(α)−6Ψ3(α)
.

For α = 0 Theorem 1 yields the following corollary.
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Corollary 1. Let f given by (1) be in the class RΣ(λ, 0,Φ) ≡ KΣ(λ,Φ).
Then

|a2| ≤
t
√

2t√
|(1 + λ)2 − 2(2λ2 + 4λ+ 1)t2|

and

|a3| ≤
t2

(1 + λ)2
+

t

3(1 + 2λ)
,

where 0 ≤ λ ≤ 1 and t 6= 1+λ√
2(2λ2+4λ+1)

.

By taking α = 0 in the above remarks we get the estimates |a2| and |a3|
for the function classes S∗Σ(1

2 ,Φ) and K∗Σ(1
2 ,Φ).

Remark 5. Let f given by (1) be in the class S∗Σ(1
2 ,Φ). Then

|a2| ≤ 2t
√

2t

and
|a3| ≤ 4t2 + t.

Remark 6. Let f given by (1) be in the class K∗Σ(1
2 ,Φ). Then for t 6= 1√

2
,

|a2| ≤
2t
√

2t√
|4− 8t2|

and
|a3| ≤ t2 +

t

3
.

3. Fekete-Szegö inequality for the function class RΣ(λ, α,Φ)

Due to Zaprawa [35], in this section we obtain the Fekete-Szegö inequality
for the function classes RΣ(λ, α,Φ).

Theorem 2. Let f given by (1) be in the class RΣ(λ, α,Φ) and µ ∈ R.
Then we have

|a3 − µa2
2| ≤

≤



t

(1 + 2λ)Ψ3(α)
,

|µ− 1| ≤

∣∣∣ (1+λ)2Ψ2
2(α)

4t2
+ 2(1 + 2λ)Ψ3(α)− (λ2 + 5λ+ 2)Ψ2

2(α)
∣∣∣

2(1 + 2λ)Ψ3(α)
,

8|1− µ|t3

|(2(1 + 2λ)Ψ3(α)− (λ2 + 5λ+ 2)Ψ2
2(α))4t2 + (1 + λ)2Ψ2

2(α)|
,

|µ− 1| ≥

∣∣∣ (1+λ)2Ψ2
2(α)

4t2
+ 2(1 + 2λ)Ψ3(α)− (λ2 + 5λ+ 2)Ψ2

2(α)
∣∣∣

2(1 + 2λ)Ψ3(α)
.
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Proof. From (20) and (22)

a3 − µa2
2 =

U1(t)(c2 − d2)

4(1 + 2λ)Ψ3(α)
+

(1− µ)× U3
1 (t)(c2 + d2)

(4(1 + 2λ)Ψ3(α)− 2(1 + 3λ)Ψ2
2(α))U2

1 (t)− 2U2(t)(1 + λ)2Ψ2
2(α)

= U1(t)

[(
h(µ) +

1

4(1 + 2λ)Ψ3(α)

)
c2 +

(
h(µ)− 1

4(1 + 2λ)Ψ3(α)

)
d2

]
,

where

h(µ) =
(1− µ)U2

1 (t)

2[2(1 + 2λ)Ψ3(α)− (1 + 3λ)Ψ2
2(α))U2

1 (t)− (1 + λ)2Ψ2
2(α)U2(t)]

.

Then, in view of (4), we conclude that

|a3 − µa2
2| ≤


t

(1+2λ)Ψ3(α) , 0 ≤ |h(µ)| ≤ 1
4(1+2λ)Ψ3(α) ,

4t|h(µ)|, |h(µ)| ≥ 1
4(1+2λ)Ψ3(α) . �

Taking µ = 1, we have the following corollary.

Corollary 2. If f ∈ RΣ(λ, α,Φ) , then

|a3 − a2
2| ≤

t

(1 + 2λ)Ψ3(α)
.

Corollary 3. Let f given by (1) be in the class S∗Σ(α,Φ) and µ ∈ R. Then
we have

|a3 − µa2
2| ≤


t

Ψ3(α) , |µ− 1| ≤

∣∣∣∣Ψ2
2(α)

8t2
+Ψ3(α)−Ψ2

2(α)

∣∣∣∣
Ψ3(α) ,

8|1−µ|t3
|((Ψ3(α)−Ψ2

2(α))8t2+Ψ2
2(α)| , |µ− 1| ≥

∣∣∣∣Ψ2
2(α)

8t2
+Ψ3(α)−Ψ2

2(α)

∣∣∣∣
Ψ3(α) .

Especially, for µ = 1, if f ∈ S∗Σ(1
2 ,Φ(z, t)), we obtain

|a3 − a2
2| ≤ t.

Corollary 4. Let f given by (1) be in the class K∗Σ(α,Φ) and µ ∈ R. Then
we have

|a3−µa2
2| ≤


t

3Ψ3(α) , |µ− 1| ≤

∣∣∣∣Ψ2
2(α)

2t2
+3Ψ3(α)−4Ψ2

2(α)

∣∣∣∣
3Ψ3(α) ,

2|1−µ|t3
|((3Ψ3(α)−4Ψ2

2(α))2t2+Ψ2
2(α)| , |µ− 1| ≥

∣∣∣∣Ψ2
2(α)

2t2
+3Ψ3(α)−4Ψ2

2(α)

∣∣∣∣
3Ψ3(α) .

Especially, for µ = 1 if f ∈ K∗Σ(1
2 ,Φ) we obtain

|a3 − a2
2| ≤

t

3
.
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